

NDA-2016 I MATH PAPER

Timing: 150 minutes

M.M: 300

INSTRUCTION:- Read questions carefully. For each wrong answer, one-third (0.883) of the marks assigned to that question will be deducted. Each question contains (2.5) marks. / प्रश्नों को ध्यानपूर्वक पढ़िए। प्रत्येक गलत उत्तर के लिए, दिए गए अंकों में से एक–तिहाई (0.883) अंक काटे जायेंगे। प्रत्येक प्रश्न (2.5) अंक का है।

5. If $f(x_1) - f(x_2) = f(\frac{x_1 - x_2}{1 - x_1 x_2})$ for $x_1 x_2 \in (-1, 1)$, 1. Suppose ω is a cube root of unity with $\omega \neq 1$. Suppose P and Q are the points on the complex then what is f(x) equal to? /यदि $x_1, x_2 \in (-1, 1)$, के plane defined by ω and ω^2 . If O is origin, then लिए $f(x_1) - f(x_2) = f(\frac{x_1 - x_2}{1 - x_1 x_2})$ है, तो f(x)what is the angle between OP and OQ? /मान लीजिए किसके बराबर है? कि ω (यूनिटि) का घनमूल है और $\omega \neq 1$ है। मान (a) $\ln \left(\frac{1-x}{1+x}\right)$ (b) $\ln \left(\frac{2+x}{1-x}\right)$ (c) $\tan^{-1} \left(\frac{1-x}{1+x}\right)$ (d) $\tan^{-1} \left(\frac{1+x}{1-x}\right)$ 1+x 1-xलीजिए P और $Q,\ \omega$ तथा ω^2 द्वारा परिमाषित सम्मिश्र समतल पर बिदुएँ हैं । यदि O मूलबिंदु है, तो OP और OO के बीच का कोण क्या है? 6. What is the range of the function $y = \frac{x^2}{1+x^2}$ where (a) 60° ° (b) 90° 。 (c) 120 (d) 150 $x \in \mathbb{R}^{?/}$ फलन $y = \frac{x^2}{1+x^2}$ का परास क्या है जहाँ $x \in \mathbb{R}$ है? 2. Suppose there is a relation * between the positive (b) [0, 1] (a) [0, 1) numbers x and y given by x * y if and only if (c)(0,1)(d)(0,1] $x \le y^2$. Then which one of the following is 7. A straight line intersects x and y axes at P and Q correct? /मान लीजिए कि धनात्मक संख्याओं x और y respectively. If (3, 5) is the middle point of PQ, के बीच एक संबंध * इस प्रकार दिया गया है कि x * y, then what is the area of the triangle OPQ? /एक यदि और केवल यदि $x \le y^2$ है। तो निम्नलिखित में से सरल रेखा x और y अक्षों को क्रमशः P और Q पर कौन–सा एक सही है? प्रतिच्छेद करती है। यदि (3, 5), PQ का मध्य-बिंदु है, तो (a) * is reflexive but not transitive and symmetric / त्रिभूज OPQ का क्षेत्रफल क्या है? * स्वतूल्य है लेकिन संक्रामक और सममित नहीं (a) 12 square units/ 12 वर्ग इकाई (b) * is transitive but not reflexive and symmetric / (b) 15 square units/ 15 वर्ग इकाई * संक्रामक है लेकिन स्वतल्य और सममित नहीं (c) * is symmetric and reflexive but not transitive / (c) 20 square units/ 20 वर्ग इकाई * सममित और स्वतुल्य है लेकिन संक्रामक नहीं (d) 30 square units/ 30 वर्ग इकाई 8. If a circle of radius b units with centre at (0, b)(d) * is symmetric but not reflexive and transitive touches the line $y = x - \sqrt{2}$, then what is the /* सममित है लेकिन स्वतुल्य और संक्रामक नहीं 3. If $x^2 - px + 4 > 0$ for all real values of x, then value of b? /यदि b त्रिज्या इकाई और केंद्र (0, b) का which one of the following is correct? /यदि x = bएक वृत्त, रेखा $y = x - \sqrt{2}$ को स्पर्श करता है, तो b सभी वास्तविक मानों के लिए $x^2 - px + 4 > 0$ है, तो का मान क्या है? निम्नलिखित में से कौन-सा एक सही है? (a) $2 + \sqrt{2}$ (b) $2 - \sqrt{2}$ (c) $2\sqrt{2}$ (d) $\sqrt{2}$ (a) |p| < 4(b) $|p| \le 4$ 4. If $z = x + iy = (\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}})^{-25}$, where $i = \sqrt{-1}$, 9. यदि ω , 1 का घनमूल हो तो $\frac{1+2\omega+3\omega^2}{2+3\omega+\omega^2} + \frac{2+3\omega+3\omega^2}{3+3\omega+2\omega^2}$ का मान बताओ | / If ω is the cube root of unity then find the value of $\frac{1+2\omega+3\omega^2}{2+3\omega+\omega^2}$ + $\frac{2+3\omega+3\omega^2}{3+3\omega+2\omega^2}$ (a) -1 (b) $\frac{2}{2}\omega$ (c) $\frac{1}{2}\omega$ then what is the fundamental amplitude of $z=\sqrt{2}$? (d) -2 ω $\sqrt[4]{4}$ यदि $z = x + iy = (\sqrt{2} - \sqrt{2})^{2/3}$, जहाँ है, तो $\frac{Z - \sqrt{2}}{z - i\sqrt{2}}$ 1 $\log_x y \quad \log_x z$ **10.** $|\log_{v} x|$ $\log_y z| = ?$ का मूल आयाम क्या है? 1 (a) π (b) $\frac{\pi}{2}$ $\log_z x \quad \log_z y$ 1 (a) $\log_{v} z$ (b) $\log_z y$ (c) $\log_x z$ (d) 0 $(c)\frac{\pi}{3}$ (d) <u>π</u>

11. अवकलन समीकरण $\frac{dx}{dy} + \frac{x}{y} - y^2 = 0$ का हल बताओ। What is the solution of the differential equation $\frac{dx}{dy} + \frac{x}{y} - y^2 = 0$ (a) $xy = x^4 + c$ (b) $xy = y^4 + (c) 4xy = y^4 + c$ (d) $3xy = y^3 + c$

For the next two (2) items that follow: / अगले दो प्रश्नांशों के लिए:

Consider the curves

$$f(x) = x|x| - 1 \text{ and } g(x) = \{\frac{\frac{3x}{2}}{2x}, x \ge 0 / \text{वक}^{\dagger} \\ \frac{3x}{2x}, x \le 0 / \text{ वक}^{\dagger} \\ f(x) = x|x| - 1 \text{ और } g(x) = \{\frac{\frac{3x}{2}}{2}, x \ge 0 \\ \frac{3x}{2x}, x \le 0 / \text{ uv fatter} \}$$

कीजिएः

- 12. Where do the curves intersect?/ये वक्र कहाँ प्रतिच्छेद करते हैं?
 - (a) At (2, 3) only/ केवल (2, 3) पर
 - (b) at (-1, -2) only / केवल (-1, -2) पर
 - (c) At (2, 3) and (-1, -2)/कंवल (2, 3) और (-1, -2) पर (d) Neither at (2, 3) nor at (-1, -2) / न तो (2, 3) पर और न ही (-1, -2) पर
- 13. What is the area bounded by the curves?/इन वक्रों द्वारा परिबद्ध क्षेत्रफल क्या है?
 - (a) $\frac{17}{6}$ square units/ $\frac{17}{6}$ वर्ग इकाई
 - (b) $\frac{8}{3}$ square units $\frac{8}{3}$ arf start
 - (c) 2 square units / 2 वर्ग इकाई
 - (d) $\frac{1}{3}$ square unit/ $\frac{1}{3}$ वर्ग इकाई

For the next two (02) items that follow: /अगले दो प्रश्नांशों के लिए:

- Consider the function $f(x) = \frac{27}{4}(x^3 x) / \mathbf{b}$ लन
- $f(x) = \frac{1}{4}(x^3 x)$ पर विचार कीजिए।
- 14. How many solutions does the function f(x) = 1have?/ $\frac{f(x) = 1}{\sqrt{\pi}}$ के कितने हल हैं?
 - (a) 1 (b) 2 (c) 3 (d) 4
- 15. How many solutions does the function f(x) = -1have? / फलन f(x) = -1 के कितने हल हैं? (a) 1 (b) 2 (c) 3 (d) 4

For the next two (02) items that follow: अगले दो प्रश्नांशों के लिए:

Consider the functions f(x) = x g(x) and g(x) =

 $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ where [.] is the greatest integer function./ फलन

f(x) = x g(x) और $g(x) = \begin{bmatrix} 1 \\ x \end{bmatrix}$ जहाँ अधिकतम पूर्णांक फलन है, पर विचार कीजिए। **16.** What is $\int_{1}^{2} g(x) dx$ equal to? $\int_{1}^{2} g(x) dx$ किसके बराबर है? (a) ¹/₆ (c) $\frac{18}{18}$ 17. What is $\int_{\underline{1}} f(x) dx$ equal to? $/\int_{\underline{1}} f(x) dx$ किसके बराबर है? (a) $\frac{37}{72}$ (c) <u>17</u> (d)<u>37</u> 144 For the next five (05) items that follow:/ अगले 5 प्रश्नों के लिएः Consider the function $f(x) = |x - 1| + x^2$ where $x \in \mathbb{R}$ /फलन $f(x) = |x - 1| + x^2$ जहाँ $x \in \mathbb{R}$, पर विचार कीजिए । **18.** Which one of the following statements is correct? / (a) f(x) is continuous but not differentiable at x = 0 / f(x), x = 0 पर संतत है किंतू अवकलनीय नहीं है (b) f(x) is continuous but not differentiable at x = 1 / f(x), x = 1 पर संतत है किंतू अवकलनीय नहीं है (c) f(x) is differentiable at x = 1 / f(x), x = 1पर अवकलनीय है (d) f(x) is not differentiable at x = 0 and x = 1 / 1f(x), x = 0 और x = 1 पर अवकलनीय नहीं है **19.** Which one of the following statements is correct?/निम्नलिखित कथनों में से कौन -सा एक सही है?

(a) f(x) is increasing in $(-\infty, \frac{1}{2})$ and decreasing in $\begin{pmatrix} (1, \infty) \\ 2 \end{pmatrix} / f(x), \begin{pmatrix} (-\infty, \frac{1}{2}) \\ \frac{1}{2} \end{pmatrix}$ में वर्धमान और $\begin{pmatrix} (1, \infty) \\ 2 \end{pmatrix}$ में

∠ हासमान है

(b) f(x) is decreasing in $(-\infty, \frac{1}{2})$ and increasing in $(\frac{1}{2}, \infty) / f(x), (-\infty, \frac{1}{2})$ में हासमान और $(\frac{1}{2}, \infty)$ में

वर्धमान है (c) f(x) is increasing in $(-\infty, 1)$ and decreasing in $(1,\infty) / f(x), (-\infty, 1)$ में वर्धमान और $(1,\infty)$ में हासमान है

(d) f(x) is decreasing in $(-\infty, 1)$ and increasing in $(1, \infty) / f(x)$ में $(-\infty, 1)$ हूासमान और $(1, \infty)$ में वर्धमान है

20. Which one of the following statements is correct? /निम्नलिखित कथनों में से कौन -सा एक सही है?
(a) f(x) has local minima at more than one point in (-∞, ∞) /f(x) के, (-∞, ∞) में एक से अधिक बिंदुओं पर स्थानीय अल्पिष्ठ हैं
(b) f(x) has local maxima at more than one point

(b) f(x) has local maxima at more than one point in $(-\infty, \infty)/f(x)$ के, $(-\infty, \infty)$ में एक से अधिक बिंदुओं पर स्थानीय उच्चिष्ठ है

(c) f(x) has local minimum at one point only in $(-\infty,\infty)/f(x)$ का, $(-\infty,\infty)$ में एक बिंदु पर स्थानीय अल्पिष्ठ है (d) f(x) has neither maxima nor minima in $(-\infty,\infty)/f(x)$ का, $(-\infty,\infty)$ में न तो उच्चिष्ठ है और न ही अल्पिष्ठ 21. What is the area of region bounded by *x*-axis, the curve y = f(x) and the two ordinates $x = \frac{1}{2}$ and x = 1?/x – अक्ष, वक्र y = f(x) और दो कोटियों $x = \frac{1}{2}$ तथा x = 1 द्वारा परिबद्ध प्रदेश का क्षेत्रफल क्या \$? (a) $\frac{5}{12}$ square unit $\frac{5}{12}$ वर्ग इकाई (b) $\frac{5}{6}$ square unit $\frac{5}{6}$ at satisfy the square unit $\frac{5}{6}$ at $\frac{5$ (c) $\frac{7}{6}$ square unit/ $\frac{7}{6}$ \overline{a} \overline{f} \overline{s} \overline{a} \overline{f} (d) 2 square unit / 2 वर्ग इकाई 22. What is the area of the region bounded by *x*-axis, the curve y = f(x) and the two ordinates x = 1and $x = \frac{3?}{2} / x$ – अक्ष, वक्र y = f(x) और दो कोटियों x = 1 तथा $x = \frac{3}{2}$ द्वारा परिबद्ध प्रदेश का क्षेत्रफल क्या 考? (a) $\frac{5}{12}$ square unit $\frac{5}{12}$ ari satisfy a square unit $\frac{5}{12}$ ari satisfy a square unit $\frac{5}{12}$ and $\frac{5}{12}$ (b) $\frac{7}{12}$ square unit $\frac{7}{12}$ वर्ग इकाई (c) $\frac{2}{3}$ square unit $\frac{2}{3}$ av $\frac{2}{3}$ av (d) $\frac{11}{12}$ square unit $/\frac{11}{12}$ arf starts For the next two (02) items that follow: /आगे आने वाले दो प्रश्नों के लिएः Given that $a_n = \int_0^\pi \frac{\sin^2\{(n+1)x\}}{\sin 2x} dx$ /दिया गया है कि $a_n = \int_0^{\pi} \frac{\sin^2\{(n+1)x\}}{\sin 2x} dx$ 23. Consider the following statements: /निम्नलिखित कथनों पर विचार कीजिएः 1. The sequence $\{a_{2n}\}$ is in AP with common difference zero. / $\{a_{2n}\}$, $\exists r, s = a_{2n}$, सार्व अंतर शून्य के साथ में है। 2. The sequence $\{a_{2n+1}\}$ is in AP with common difference zero. /अनुक्रम सार्व अंतर शून्य के साथ AP में है। Which of the above statements is/are correct? /उपर्युक्त कथनों में से कौन-सा/से सही है/हैं? (a) 1 only/ केवल 1 (b) 2 only / केवल 2 (c) Both 1 and 2 /1 और 2 दोनों (d) Neither 1 nor 2 /न तो 1 और न ही 2 24. What is $a_{n-1} - a_{n-4}$ equal to? $a_{n-1} - a_{n-4}$ किसके बराबर है?

(b) 0

(c) 1 (d) 2

For the next two (02) items that follow: / आगे आने वाले दो प्रश्नों के लिएः Consider the equation x + |y| = 2y. |x + |y| = 2yसमीकरण पर विचार कीजिए। **25.** Which of the following statements are NOT correct?/निम्नलिखित कथनों में से कौन-से सही नहीं हैं? 1. *y* as a function of *x* is not defined for all real *x*. /y, x के फलन के रूप में, सभी वास्तविक x के लिए परिभाषित नहीं है। 2. y as a function of x is not continuous at x = 0/y, x के फलन के रूप में, x = 0 पर संतत नहीं 3. y as a function of x is differentiable for all x./y, x के फलन के रूप में, सभी x के लिए अवकलनीय है । Select the correct answer using the code given below. /नीचे दिए गए कूट का प्रयोग कर सही उत्तर चुनिए । (a) 1 and 2 only /केवल 1 और 2 (b) 2 and 3 only/ केवल 2 और 3 (c) 1 and 3 only/ केवल 1 और 3 (d) 1, 2 and 3/1, 2 और 3 **26.** What is the derivative of *y* as a function of *x* with respect to x for x < 0? /y का x के एक फलन के रूप में x के सापेक्ष x < 0 के लिए अवकलज क्या है? (a) 2 (b) 1 1 $(d)_{\frac{1}{3}}$ (c) $\frac{1}{2}$ For the next two (02) items that follow: / आगे आने वाले दो प्रश्नों के लिएः Consider the lines y = 3x, y = 6x and y = 9 /रेखाओं y = 3x, y = 6x और y = 9 पर विचार कीजिए। 27. What is the area of the triangle formed by these lines?/इन रेखाओं द्वारा निर्मित त्रिभुज का क्षेत्रफल क्या है? (a) $\frac{27}{4}$ square units/ $\frac{27}{4}$ arf satisfy a square units/ $\frac{27}{4}$ arg satisfy a square units/ $\frac{$ (b) 27 square units / 27 वर्ग डकाई (c) $\frac{19}{4}$ square units $/\frac{19}{4}$ at sats (d) $\frac{19}{2}$ square units $/\frac{19}{2}$ at sats **28.** The centroid of the triangle is at which one of the following points? /इस त्रिभुज का केन्द्रक निम्नलिखित बिंदुओं में से किस पर है? (a)(3, 6)(b) $\left(\frac{3}{2}, 6\right)$ (d) $(\frac{3}{2}, 9)$ (c)(3,3)For the next two (02) items that follow: /आगे आने वाले दो प्रश्नांशों के लिए Consider the function $f(x) = (x - 1)^2(x + 1)^$

 $1)(x-2)^3$ /फलन $f(x) = (x-1)^2(x+1)(x-2)^3$ पर विचार कीजिए।

(a) -1

29. What is the number of points of local minima of the function f(x)?/ f(x) फलन के कितने स्थानीय अल्पिष्ठ बिंदु हैं?
(a) None//कोई नहीं (b) 1

30. What is the number of points of local maxima of the function f(x)?

(d) 3

(a) None /कोई नहीं (b) 1

(c) 2

(c) 2 (d) 3 **31.** Let f(x) and g(x) be twice differentiable functions on [0, 2] satisfying f''(x)=g''(x), f'(1) = 4, g'(1) = 6, f(2) = 9 and g(2) = 9. Then what is f(x) - g(x) at x = 4 equal to? $/_{\text{HIFI}}$ ellow f(x) और g(x), [0, 2] पर दो बार अवकलनीय wलन हैं तथा $f''(x)=g''(x), f'(1) = 4, g'^{(1)} =$ 6, f(2) = 3 और g(2) = 9 को संतुष्ट करते हैं। तब x = 4 पर f(x) - g(x) किसके बराबर है? (a) -10 (b) -6 (c) -4 (d) 2

For the next two items that follow: /आगे आने वाले दो प्रश्नांशों के लिए:

Consider the curves y = |x - 1| and $|x| = 2 / a \beta$ y = |x - 1| और |x| = 2 पर विचार कीजिए।

- 32. What is/are the point(s) of intersection of the curves? /इन वक्रों का/के प्रतिच्छेद बिंदु क्या है/हैं? (a) (-2, 3) only /केवल (-2, 3)
 - (b) (2, 1) only /केवल (2, 1)
 - (c) (-2, 3) and (2, 1)/(-2, 3) और (2, 1)
 - (d) Neither (-2, 3) nor (2, 1) /न तो (-2, 3) और न ही (2, 1)
- 33. What is the area of the region bounded by the curves and x-axis? /इन वक्रों और x अक्ष द्वारा परिबद्ध प्रदेश का क्षेत्रफल क्या है?
 - (a) 3 square units/3 वर्ग इकाई
 - (b) 4 square units /4 वर्ग इकाई
 - (c) 5 square units / 5 वर्ग इकाई
 - (d) 6 square units/ 6 वर्ग इकाई

For the next two (02) items that follow: /आगे आने वाले दो प्रश्नों के लिए:

 χ^3 sin x cos x Consider the function f(x) = |6|0 | $^{-1}$ p^2 p^3 where p is a constant. /फलन χ^3 $\sin x \cos x$ f(x) = | 6-10 | जहाँ p एक अचर है, पर विचार p^2 p^3 p कीजिए । **34.** What is the value of f'(0)? /f'(0) on Hind of an equation \mathfrak{k} ? (a) p^{3} (b) 3p³ (c) 6p³ (d) $-6p^3$

- **35.** What is the value of *p* for which f''(0) = 0? / p के किस मान के लिए f''(0) = 0 है?
 - (a) $-\frac{1}{6}$ or 0 (b) -1 or 0 (c) $-\frac{1}{6}$ or 1 (d) -1 or 1

For the next two (02) items that follow: /आगे आने वाले दो प्रश्नांशों के लिए:

Consider a triangle *ABC* in which $\cos A + \cos B + \cos C = \sqrt{3} \sin \frac{\pi}{3} / \sqrt{3}$ एक त्रिभुज *ABC* जिसमें $\cos A + \cos B + \cos C = \sqrt{3} \sin \frac{\pi}{3}$ है, पर विचार कीजिए।

36. What is the value of $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$? $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ का मान क्या है

$$\begin{array}{c} (a) \frac{1}{2} \\ (c) \frac{1}{8} \\ \end{array}$$
 (b) $\frac{1}{4} \\ (c) \frac{1}{16} \\ \end{array}$ (d) $\frac{1}{16}$

 $(C)_{\frac{8}{8}}^{-}$ 37. What is the value of

$$\begin{array}{c}
\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)\cos\left(\frac{C+A}{2}\right)?\\
/\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)\cos\left(\frac{C+A}{2}\right)}{2} & \text{का मान क्या ह}?\\
(a) \frac{1}{4}\\
(b) \frac{1}{2}\\
(c) \frac{1}{16}
\end{array}$$

(d) None of the above /उपर्युक्त में से कोई नहीं For the next two (2) items that follow: / आगे आने वाले दो प्रश्नांशों के लिए:

Given that $\tan \alpha$ and $\tan \beta$ are the roots of the equation $x^2 + bx + c = 0$ with $b \neq 0$. /दिया गया है कि $\tan \alpha$ और $\tan \beta$ समीकरण $x^2 + bx + c = 0$ के मूल हैं, जहाँ $b \neq 0$ है।

- **38.** What is $\tan(\alpha + \beta)$ equal to? $/\tan(\alpha + \beta)$ किसके बराबर है?
 - (a) b(c-1) (b) c(b-1)
 - (c) $c(b-1)^{-1}$ (d) $b(c-1)^{-1}$
- **39.** What is $\sin(\alpha + \beta) \sec \alpha \sec \beta$ equal to? / $\sin(\alpha + \beta) \sec \alpha \sec \beta$ किसके बराबर है?
 - (a) b (b) -b(c) c (d) -c

For the next two items that follow: / आगे आने वाले दो प्रश्नांशों के लिए:

Consider the two circles $(x - 1)^2 + (y - 3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0 / दो बृत्तों <math>(x - 1)^2 + (y - 3)^2 = r^2$ और $x^2 + y^2 - 8x + 2y + 8 = 0$ पर विचार कीजिए।

- **40.** What is the distance between the centres of the two circles? /दोनों वृत्तों के केन्द्रों के बीच की दूरी क्या है?
 - (a) 5units / 5 इकाई (b) 6 units / 6 इकाई
 - (c) 8 units /8 इकाई (d) 10 units /10 इकाई
- 41. If the circles intersect at two distinct points, then which one of the following is correct? /यदि वृत्त दो

अलग–अलग बिंदओं पर प्रतिच्छेद करते हैं, तो निम्नलिखित में कौन–सा एक सही है?	For the next two (02) items that follow: / आगे आने वाले दो प्रश्नांशों के लिए:
(a) $r = 1$ (b) $1 < r < 2$	Let z_1 , z_2 and z_3 be non-zero complex numbers
(c) $r = 2$ (d) $2 < r < 8$	satisfying $z^2 = iz$ where $i = \sqrt{-1}$./मान लीजिए कि
For the next two items that follow: / आगे आने वाले दो	satisfying $z^2 = t_x$ where $t = \sqrt{-1}$. (गांग लागजर प z_1 , z_2 और , z_3 शून्येतर सम्मिश्र संख्याएँ हैं, जो $z^2 = tz$ व
प्रश्नांशों के लिए:	
Consider the two lines $x + y + 1 = 0$ and $3x + 2y + 1 = 0$	संतुष्ट करती हैं, जहां $i = \sqrt{-1}$ है।
1 = 0 / दो रेखाओं x + y + 1 = 0 और $3x + 2y + 1 = 0पर विचार कीजिए।$	48. What is $z_1 + z_2 + z_3$ equal to? $/z_1 + z_2 + z_3$ किसके बराबर है?
42. What is the equation of the line passing through	(a) i (b) $-i$
the point of intersection of the given lines and	$\begin{array}{c} (c) \ 0 \\ (d) \ 1 \\ (c) \ c) \\ (c) \ $
parallel to x —axis? /दी गई रेखाओं के प्रतिच्छेद बिंदु से गुजरने वाली और x —अक्ष के समांतर रेखा का	49. Consider the following statements: /निम्नलिखित कथनों पर विचार कीजिएः
समीकरण क्या है?	1. z ₁ z ₂ z ₃ is purely imaginary. /शुद्धतः काल्पनिक है
(a) $y + 1 = 0$ (b) $y - 1 = 0$	2. $z_1z_2 + z_2z_3 + z_3z_1$ is purely real./ $z_1z_2 + z_2z_3 + z_3z_1$
(c) $y - 2 = 0$ (d) $y + 2 = 0$	$Z_2Z_3 + Z_3Z_1$ शुद्धतः वास्तविक है।
43. What is the equation of the line passing through	Which of the above statements is/ are
the point of intersection of intersection of the	correct?/उपर्युक्त कथनों में से कौन-सा/से सही है/
given lines and parallel to y-axis? /दी गई रेखाओं के	(a) 1 only /केवल 1
प्रतिच्छेद बिंदु से गुजरने वाली और y –अक्ष के समांतर	(b) 2 Only /केवल 2
रेखा का समीकरण क्या है?	(c) Both 1 and 2/1 और 2 दोनों (d) Nation 1 and 2/न के प्रकोष न की न
(a) $x + 1 = 0$ (b) $x - 1 = 0$	(d) Neither 1 nor 2/ㅋ तो 1 और ㅋ 탕 2
(c) $x - 2 = 0$ (d) $x + 2 = 0$	For the next two (02) items that follow: / आगे आने वाले दो प्रश्नांशों के लिए:
For the next two items that follow:/आगे आने वाले दो प्रश्नांशों के लिए:	Given that $\log_x y$, $\log_z x$, $\log_y z$ are in GP, $xyz = 6$
Consider the equation $k \sin x + \cos 2x = 2k - 7$	and x^3 , y^3 , z^3 are in AP. / दिया गया है कि $\log_x y$,
/समीकरण $k \sin x + \cos 2x = 2k - 7$ पर विचार कीजिए।	log _z x , log _y z GP में हैं, xyz = 64 है और x³, y³, z³ र
44. If the equation possesses solution, then what is the	AP हैं।
minimum value of k? /यदि समीकरण का हल है, तो k का न्यूनतम मान क्या है?	50. Which one of the following is correct?/निम्नलिखि में से कौन–सा एक सही है?
(a) 1 (b) 2	<i>x, y</i> and <i>z /x, y</i> और <i>z</i>
(c) 4 (d) 6	(a) in AP Only/केवल AP में हैं
45. If the equation possesses solution, then what is the	(b) In GP Only/ केवल GP में हैं
maximum value of $k?$ / यदि समीकरण का हल है, तो	(c) In both AP and GP / AP तथा GP दोनों में हैं
k का अधिकतम मान क्या है?	(d) neither in AP nor in GP /न तो AP में और न ह
(a) 1 (b) 2	GP में हैं
(c) 4 (d) 6 For the next two items that follow: /आगे आने वाले दो	51. Which one of the following is correct? /निम्नलिखि में से कौन–सा सही है?
प्रश्नांशों के लिए:	xy, yz and zx are / xy, yz और zx
Consider the function $f(x) = \frac{a^{ x +x}-1}{ x +x}$ where [.]	(a) in AP Only /केवल AP में हैं
	(b) In GP only /केवल GP में हैं
denotes the greatest integer function. /फलन $f(x) = e^{ x +x-1}$	(c) In both AP and GP / AP और GP दोनों में हैं
a ^{x +x} -1 _{x +x} , जहाँ [.] अधिकतम पूर्णांक फलन निरूपित करता है, पर विचार कीजिए।	(d) Neither in AP nor in GP /न तो AP में और न GP में है
46. What is $\lim_{x\to 0^+} f(x)$ equal to? $\lim_{x\to 0^+} f(x)$ किसके बराबर है?	For the next two (02) items that follow: / आगे आने व दो प्रश्नांशों के लिए:
(a) 1 _1 (b) $\ln a$	Let z be a complex number satisfying $\left \frac{z-4}{z-8}\right = 1$ and
(c) $1 - a$ (d) Limit does not exist 47. What is $\lim_{x\to 0^-} f(x)$ equal to? $/\lim_{x\to 0^-} f(x)$	$\left \frac{z}{z-2}\right = \frac{3}{2}^{/}$ मान लीजिए कि z एक सम्मिश्र संख्या है, जो
किसके बराबर है?	$\left \frac{z-4}{z-8}\right = 1$ और $\left \frac{z}{z-2}\right = \frac{3}{2}$ को संतुष्ट करती है।
	2^{-0} 7^{-2} 2^{-3}
(a) 1 (b) $\ln a$	52. What is $ z $ equal to? $/ z $ किसके बराबर है?

(c) 18 (d) 36 53. What is $\left|\frac{z-6}{z-6}\right|$ equal to? $\left|\frac{z-6}{z-6}\right|$ किसके बराबर है? (a) 3 (b) 2 (c) 1 (d) 0

For For the next two items that follow: /आगे आने वाले दो प्रश्नांशों के लिए:

A function f(x) is defined as follows: /एक फलन f(x)के रूप में परिभाषित है:

$$f(x) = \begin{array}{c} x + \pi \text{ for } x \in [-\pi, 0) \\ \pi \cos x \text{ for } x \in [0, \frac{\pi}{2}] \\ \frac{\pi}{2} \quad \frac{\pi}{2} \quad \pi \\ (x - \frac{\pi}{2}) \quad \text{for } x \in (\frac{\pi}{2}, \pi] \end{array}$$

54. Consider the following statements: /निम्नलिखित कथनों पर विचार कीजिए:

1. The function f(x) is continuous at x = 0. /फलन f(x), x = 0 पर संतत है। 2. The function f(x) is continuous at $x = \frac{\pi}{2}$ /

फलन
$$f(x), x = \frac{\pi}{2}$$
 पर संतत है।

Which of the above statements is/are correct? $/ \exists u_1 \neq 0$

(a) 1 Only/केवल 1

(b) 2 Only /केवल 2

(c) both 1 and 2 /1 और 2 दोनों

(d) Neither 1 nor 2/न तो 1 और न ही 2

55. Consider the following statements:/निम्नलिखित कथनों पर विचार कीजिए:

1. The function f(x) is differentiable at x = 0. /

फलन f(x), x = 0 पर अवकलनीय है। 2. The function $f_{\pi}(x)$ is differentiable at $x = \frac{\pi}{2}/2$

फलन $f(x), x = \frac{\mu}{2}$ पर अवकलनीय है।

Which of the above statements is/are correct?/ उपर्युक्त कथनों में से कौन-सा/से सही है/हैं?

- (a) 1 Only/केवल 1
- (b) 2 Only /केवल 2
- (c) both 1 and 2 /1 और 2 दोनों
- (d) Neither 1 nor 2/न तो 1 और न ही 2

For For the next two items that follow: /आगे आने वाले दो प्रश्नांशों के लिए:

Let α and β ($\alpha < \beta$) be the roots of the equation

 $x^2 + bx + c = 0$, where b > 0 and c > 0. /मान लीजिए कि α और β ($\alpha < \beta$) समीकरण $x^2 + bx + c = 0$ के मूल हैं. जहाँ b > 0 और c > 0 हैं।

कीजिएः 1 - 0

1. $\beta < -\alpha$ 2. $\beta < |\alpha|$

2. p < |u|

Which of the above is/are correct? / उपर्युक्त कथनों में से कौन-सा/से सही है/हैं?

(a) 1 Only/केवल 1

(b) 2 Only /केवल 2

(c) both 1 and 2/1 और 2 दोनों (d) Neither 1 nor 2/न तो 1 और न ही 2 57. Consider the following / निम्नलिखित पर विचार कीजिए: 1. $\alpha + \beta + \alpha\beta > 0$ 2. $\alpha^2\beta + \beta^2\alpha > 0$ Which of the above is/are correct? / उपर्युक्त कथनों में से कौन-सा/से सही है/हैं? (a) 1 Only/केवल 1 (b) 2 Only/केवल 2 (c) both 1 and 2/1 और 2 दोनों (d) Neither 1 nor 2/न तो 1 और न ही 2 For the next two (03) items that follow: / आगे आने

For the next two (03) items that follow: / आगे आने वाले तीन प्रश्नांशों के लिए:

Consider a parallelogram whose vertices are A(1, 2), B(4, y), C(x, 6) and D(3, 5) taken in order. /एक समांतर चतुर्भुज, जिसके शीर्ष, एक क्रम में, A(1, 2), B(4, y), C(x, 6) और D(3, 5) हैं, पर विचार

- कीजिए। 58. What is the value of $AC^2 - BD^2$? / $AC^2 - BD^2$ का
- मान क्या है? (a) 25 (b) 30
 - (c) 36 (d) 40
- **59.** What is the point of intersection of the diagonals? /विकर्णों का प्रतिच्छेद बिंदु क्या है?

(a) $(\frac{7}{2}, 4)$	(b) (3, 4)
(c) $(\frac{7}{2}, 5)$	(d) (3, 5)

- **60.** What is the area of the parallelogram? /समांतर-चतुर्भुज का क्षेत्रफल क्या है? (a) ^Z square units / ^Z ₂ वर्ग इकाई
 - (b) 4 square units/ 4 वर्ग इकाई
 - (c) $\frac{11}{2}$ square units/ $\frac{11}{2}$ वर्ग इकाई
 - (d) 7 square units/ 7 वर्ग इकाई

For the next two (04) items that follow: / आगे आने वाले चार प्रश्नांशों के लिए:

Let $f: R \to R$ be a function such that $f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$ for $x \in R$. /मान लीजिए कि एक फलन $f: R \to R$ इस प्रकार है कि $x \in R$ के लिए $f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$ है।

61. What is f(1) equal to? / f(1) किसके बराबर है?

- (a) -2 (b) -1(c) 0 (d) 4
- (c) 0 (d) 4 62. What is f'(1) equal to? / f'(1) किसके बराबर है? (a) -6 (b) -5
 - (a) -0 (b) -2(c) 1 (d) 0
- 63. What is f'''(10) equal to? / f'''(10) किसके बराबर है?
 - (a) 1 (b) 5
 - (c) 6 (d) 8

64. Consider the following:/निम्नलिखित पर विचार कीजिए:

1. f(2) = f(1) - f(10)2. f''(2) - 2f'(1) = 12Which of the above is/are correct? /उपर्युक्त में से

कौन–सा/से सही हैं/है?

(a) 1 Only/केवल 1

- (b) 2 Only / केवल 2
- (c) both 1 and 2 /1 और 2 दोनों
- (d) Neither 1 nor 2/न तो 1 और न ही 2

For the next three (03) items that follow: //आगे आने वाले तीन प्रश्नांशों के लिए:

A plane *P* passes through the line of intersection of the planes 2x - y + 3z = 2, x + y - z = 1 and the point (1, 0, 1). /एक समतल *P*, समतलों 2x - y + 3z = 2,

x + y - z = 1 की प्रतिच्छेदन रेखा और बिंदु (1, 0, 1) से गुजरता है।

- 65. What are direction ratios of the line of intersection of the given planes? /दिए गए समतलों की प्रतिच्छेदन रेखा के दिक्-अनुपात क्या है?
 - (a) (2, -5, -3)(b) (1, -5, -3)(c) (2, 5, 3)(d) (1, 3, 5)
- 66. What is the equation of the plane *P*? /समतल *P* का समीकरण क्या है?
 - (a) 2x + 5y 2 = 0 (b) 5x + 2y 5 = 0
 - (c) x + z 2 = 0 (d) 2x y 2z = 0
- 67. If the plane P touches the sphere $x^2 + y^2 + z^2 = r^2$, then what is r equal to? / यदि समतल P, गोले $x^2 + y^2 + z^2 = r^2$ को स्पर्श करता है, तो r किसके बराबर है?

(a)
$$\frac{2}{\sqrt{29}}$$
 (b) $\frac{4}{\sqrt{29}}$
(c) $\frac{5}{\sqrt{29}}$ (d) 1

For the next two (02) items that follow: /आगे आने वाले दो प्रश्नांशों के लिए:

Consider the function $f(x) = |x^2 - 5x + 6|$ /फलन $f(x) = |x^2 - 5x + 6|$ पर विचार कीजिए।

68. What is f'(4) equal to? /f'(4) किसके बराबर है?

(a) -4	(b) -3
(c) 3	(d) 2

- **69.** What is f"(2.5) equal to? / f"(2.5) किसके बराबर है?
 - (a) -3 (b)-2
 - (c) 0 (d) 2
- 70. एक मशीन के तीन पूर्जे A, B और C है, जिनके दोषयुक्त होने की प्रायिकताएँ क्रमशः 0.02, 0.10 और 0.05 है। यदि इन पूर्जों में से कोई भी एक पूर्जा सदोष हो जाए, तो मशीन काम करना बन्द कर देती है। इसकी क्या प्रायिकता है कि मशीन काम करना बन्द नहीं करेगी? / There are three parts A, B and C of a machine. The probabilities of beibng defective of part A, B and C are respectively 0.02, 0.10 and 0.05. Machine stops working if any

part of the machine is defective. Find the probability that the machine do not stop working.

- (a) 0.06 (b) 0.16 (c) 0.84 (d) 0.94
- **71.** मान लीजिए कि यादृच्छिक चर B(6, p) का अनुसरण करता है। यदि 16P(X = 4) = P(X = 4) = P(X = 2), तो pका मान क्या है? / Let a random variable X, follows the binomial distribution B(6, p). if 16P(X = 4) = P(X = 2), then find the value of p(a) $\frac{1}{3}$ (b) $\frac{1}{4}$ (c) $\frac{1}{7}$ (d) $\frac{1}{6}$

For the next two (02) items that follow: /आगे आने वाले दो प्रश्नाशों के लिए:

Consider a circle passing through the origin and the points (a, b) and (-b, -a). / मूलबिंदु और बिंदुओं (a, b) और (-b, -a) से गुजरने वाले एक वृत्त पर विचार कीजिए।

72. On which line does the centre of the circle lie? /वृत्त का केन्द्र किस रेखा पर है? (a) x + y = 0 (b) x - y = 0

(c)
$$x + y = a + b$$
 (d) $x - y = a^2 - b^2$

73. What is the sum of the squares of the intercepts cut off by the circle on the axes? / अक्षों पर वृत्त द्वारा काटे गुग्ने, अंतर खंडों के वर्गों का योगफल क्या है? (a) $\binom{a^{2}+b^{2}}{2}$

(c)
$$4 \left(\frac{a^2 - b^2}{a - b}\right)$$
 (b) $2 \left(\frac{a}{a - b}\right)$ (d) None of the above

For the next two (02) items that follow: /आगे आने वाले दो प्रश्नांशों के लिए:

Let \hat{a}, \hat{b} be two unit vectors and θ be the angle between them. / मान लीजिए कि \hat{a}, \hat{b} दो मात्रक सदिश हैं, और उनके बीच का कोण θ है।

74. What is $\cos\left(\frac{1}{2}\right)$ equal to? $/\cos\left(\frac{1}{2}\right)$ किसके बराबर $\frac{1}{8}$?

(a)
$$\frac{|\hat{a} - \hat{b}|}{2}$$
 (b) $\frac{|\hat{a} + \hat{b}|}{2}$
(c) $\frac{|\hat{a} - \hat{b}|}{4}$ θ (d) $\frac{|\hat{a} + \hat{b}|}{4}$

- **75.** What is $\sin(\frac{1}{2})$ equal to? $/\sin(\frac{1}{2})$ किसके बराबर है?
 - (a) $\frac{|\hat{a} \hat{b}|}{2}$ (b) $\frac{|\hat{a} + \hat{b}|}{2}$ (c) $\frac{|\hat{a} - \hat{b}|}{4}$ (d) $\frac{|\hat{a} + \hat{b}|}{4}$
- 76. Consider the following statements: / निम्नलिखित कथनों पर विचार कीजिए:

1. There exists $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ for which

 $\begin{aligned} \tan^{-1}(\tan\theta) \neq \theta. / \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) & \text{ का अस्तित्व } \vec{\epsilon}, \\ & \text{जिसक } \text{ लिए } \tan^{-1}(\tan\theta) \neq \theta \ \vec{\epsilon} \text{ I} \\ & 2. \sin^{-1}\left(\frac{1}{3}\right) - \sin^{-1}\left(\frac{1}{5}\right) = \sin^{-1}\left(\frac{2\sqrt{2}(\sqrt{3}-1)}{15}\right) \\ & \text{ Which of the above statements is/are correct? / } \\ & \text{ surgiated and the above statements is/are correct? / } \\ & \text{ surgiated above and the above statements is/are correct? / } \\ & \text{ (a) 1 Only/\phated after 1} \end{aligned}$

(b) 2 Only / केवल 2 (c) both 1 and 2/1 और 2 दोनों (d) Neither 1 nor 2/न तो 1 और न ही 2 77. Consider the following statements: / निम्नलिखित कथनों पर विचार कीजिएः 1. $\tan^{-1} x + \tan^{-1} (\underline{1}) = \pi$ 2. There exist $x, y \in [-1, 1]$, where $x \neq y$ such that $\sin^{-1} x + \cos^{-1} y = \frac{\pi}{2} / x, y \in [-1, 1]$ का अस्तित्व है, जहाँ $x \neq y$ इस प्रकार कि $\sin^{-1}x + y$ $\cos^{-1} y = \frac{\pi}{2}$ Which of the above statements is/are correct? / उपर्युक्त कथनों में से कौन-सा/से सही है/हैं? (a) 1 Only/केवल 1 (b) 2 Only / केवल 2 (c) both 1 and 2 /1 और 2 दोनों (d) Neither 1 nor 2/न तो 1 और न ही 2 **78.** What are the order and degree respectively of the differential equation whose solution is y = cx + cx $c^2 - 3c^{3/2} + 2$, where c is a parameter? / अवकल समीकरण के, जिसका हल $y = cx + c^2 - 3c^{3/2} + 2$ है, जहां C एक प्राचल है, कोटि और घात क्रमशः क्या है? (a) 1, 2 (b) 2, 2 (c) 1, 3 (d) 1, 4 **79.** What is $\int_{-2}^{2} x \, dx - \int_{-2}^{2} [x] \, dx$ equal to, where [.] is the greatest integer function? $\int_{-2}^{2} x \, dx - \frac{1}{2} \int_{-2}^{2} x \, dx$ $\int_{-2}^{2} [x] dx$ जहां [.] अधिकतम पूर्णांक फलन है, किसके बराबर है? (a) 0(b) 1 (d) 4 (c) 2**80.** If $\int_{-2}^{5} f(x) dx = 4$ and $\int_{0}^{5} \{1 + f(x)\} dx = 7$ then what is $\int_{-2}^{0} f(x) dx$ equal to? / यदि $\int_{0}^{5} f(x) dx = 4$ $4 \int_{0}^{5} \{1 + f(x)\} dx = 7$ है, तो $\int_{-2}^{0} f(x) dx$ किसके बराबर है? (a) -3 (b) 2 (c) 3 (d) 5 **81.** If $\lim_{x\to 0} \phi(x) = a^2$, where $a \neq 0$, then what is $\lim_{x\to 0} \phi\left(\frac{x}{d}\right)$ equal to? / यदि $\lim_{x\to 0} \phi(x) = a^2$, जहां $a \neq 0$ है, तो $\lim_{x \to 0} \varphi(\underline{x})$ किसके बराबर है? (b) *a*⁻² (a) a^2 (c) $-a^2$ (d) -a82. What is $\lim_{x\to 0} e^{-\frac{1}{x^2}}$ equal to? / $\lim_{x\to 0} e^{-\frac{1}{x^2}}$ किसके बराबर है? (a) 0(b) 1 (d) Limit does not exist (c) -1 **83.** If A is a square matrix, then what is $adj(A^{-1})$ – $(adjA)^{-1}$ equal to? / यदि A एक वर्ग आव्यूह है, तो $adj(A^{-1}) - (adjA)^{-1}$ किसके बराबर है?

- (a) 2|A|
- (b) Null Matrix / शून्य आव्यूह
- (c) Unit matrix / एकांक आव्यूह
- (d) None of the above / उपर्युक्त में से कोई नहीं
- **84.** What is the binary equivalent of the decimal number 0.3125? / दशमलव संख्या 0.3125 का द्वि–आधारी तुल्य क्या है?
 - (a) 0.0111 (b) 0.1010
- (c) 0.0101 (d) 0.1101 **85.** Let *R* be a relation on the set *N* of natural numbers defined by $'nRm \Leftrightarrow n$ is a factor of *m*. Then which one of the following is correct? / मान लीजिए R, धन पूर्णां कों के समुच्चय N पर $'nRm \Leftrightarrow n, m$ का एक गुणनखंड है' द्वारा परिभाषित एक संबंध है। तब निम्नलिखित में सक कौन-सा एक सही है? (a) R is reflexive, symmetric but not transitive /Rस्वतुल्य, सममित है किंतु संक्रामक नहीं (b) R is transitive, symmetric but not reflexive / Rसंक्रामक है किंतु स्वतुल्य नहीं (c) R is reflexive, transitive but not symmetric / Rस्वतुल्य, संक्रामक है किंतु सममित नही (d) R is an equivalence relation / R एक तुल्यता संबंध 86. What is $\int^{4\pi} |\cos x| dx$ equal to? $/\int^{4\pi} |\cos x| dx$ किसके बराबर है? (a) 0(b) 2 (c) 4 (d) 8
- 87. What is the number of natural numbers less than or equal to 1000 which are neither divisible by 10 nor 15 nor 25? / ऐसे कितने धन पूर्णांक हैं, जो कि 1000 या उससे कम हैं तथा जो न तो 10 से, न ही 15 से और न ही 25 से विभाज्य हैं?
 - (a) 860 (b) 854

(c) 840 (d) 824 **88.** (a, 2b) is the mid-point of the line segment joining the points (10, -6) and (k, 4). If a - 2b = 7, then what is the value of k? / बिंदुओं (10, -6) और (k, 4) को मिलाने वाले रेखाखंड का मध्यबिंदु (a, 2b) है। यदि a - 2b = 7 हो, तो k का मान क्या है? (a) 2 (b) 3 (c) 4 (d) 5 89. Consider the following statements: / निम्नलिखित कथनों पर विचार कीजिएः 1. If ABC is an equilateral triangle, then $3 \tan(A +$ B)tanC=1./यदि ABC एक समबाहु त्रिभुज है, तो $3 \tan(A + B) \tan C = 1$ है।

2. If *ABC* is a triangle in which $A = 78^{\circ}$, $B = 66^{\circ}$, then $\tan\left(\frac{A}{2} + C\right) < \tan A / / \operatorname{alg} ABC$ एक त्रिभुज

है, जिसमें $A = 78^\circ, B = 66^\circ$ हैं, तो $\tan\left(\frac{A}{2} + C\right) < c$ tan A है।

3. If *ABC* is any triangle, then $\tan\left(\frac{A+B}{2}\right)\sin\left(\frac{L}{2}\right) < \frac{1}{2}$ $\cos\left(\frac{c}{2}\right)$ / यदि ABC एक कोई त्रिभुज है, तो $\tan\left(\frac{A+B}{2}\right)\sin\left(\frac{C}{2}\right) < \cos\left(\frac{C}{2}\right)$ \aleph Which of the above statements is/are correct?/ उपर्युक्त कथनों में से कौन-सा/से सही है/हैं? (a) 1 only / 1 केवल (b) 2 only/ 2 केवल (c) 1 and 2/1 और 2 (d) 2 and 3 / 2 और 3 **90.** If $A = (\cos 12^\circ - \cos 36^\circ)(\sin 96^\circ + \sin 24^\circ)$ and $B = (\sin 60^{\circ} - \sin 12^{\circ})(\cos 48^{\circ} - \cos 72^{\circ})$, then what is $\frac{A}{R}$ equal to? / $\overline{alg} A = (\cos 12^\circ$ cos36°(sin96°+sin24°) और $B = (\sin 60^{\circ} - \sin 12^{\circ})(\cos 48^{\circ} - \cos 72^{\circ})$ हैं, तो किसके बराबर है? (a) -1 (b) 0 (c) 1 (d) 2

- 91. What is the mean deviation from the mean of the numbers 10, 9, 21, 16, 24? / संख्याओं 10, 9, 21, 16, 24 का माध्य से माध्य विचलन क्या है?
 - (a) 5.2 (b) 5.0 (c) 4.5(d) 4.0
- 92. Three dice are thrown simultaneously. What is the probability that the sum on the three faces is at least 5? /तीन पासों को एक साथ फेंका जाता है। तीनों फलकों के योग के कम-से-कम 5 होने की प्रायिकता क्या 考?

(a) $\frac{17}{18}$	(b) $\frac{53}{54}$
(c) $\frac{103}{108}$	$(d)\frac{215}{216}$
108	216

93. Two independent events A and B have $P(A) = \frac{1}{2}$ and $P(B) = \frac{3}{\pi}$. What is the probability that exactly

one of the two events A or B occurs? / दो स्वंतत्र घटनाओं A और B के लिए $P(A) = \frac{1}{2}$ और $P(B) = \frac{3}{4}$ हैं। वह प्रायिकता क्या है कि A या B में से ठीक एक ही घटना घटित होगी?

- (a) <u>1</u> (b) <u>5</u> 6 (c) <u>5</u> 12 12
- 94. A coin is tossed three times. What is the probability of getting head and tail alternately? / एक सिक्के को तीन बार उछाला जाता है। चित और पट के एकांतर क्रम से आने की प्रायिकता क्या है?

(a) $\frac{1}{8}$	(b) $\frac{1}{\frac{4}{3}}$
(c) $\frac{1}{2}$	(d) $\frac{1}{4}$

95. If the total number of observations is 20, $\sum x_i =$ 1000 and $\sum x_i^2 = 84000$, then what is the variance of the distribution? / यदि प्रेक्षणों की कुल

संख्या 20 है, $\sum x_i = 1000$ और $\sum x_i^2 = 84000$ है, तो बंटन का प्रसरण क्या है?

- (a) 1500 (b) 1600
- (c) 1700 (d) 1800
- **96.** A card is drawn from a well-shuffled deck of 52 cards. What is the probability that it is queen of spade? / 52 ताशों की एक अच्छी तरह फेंटी हुई गडडी में से एक ताश निकाला जाता है। वह प्रायिकता क्या है कि यह हुकुम की रानी है?

(a)
$$\frac{1}{12}$$
 (b) $\frac{1}{13}$
(c) $\frac{1}{4}$ (d) $\frac{1}{8}$

- 97. If two dice are thrown, then what is the probability that the sum on the two faces is greater than or equal to 4? / यदि दो पासे फेंके जाते हैं, तो वह प्रायिकता क्या है कि दोनों फलकों का योग 4 या 4 से अधिक है?
 - (a) <u>13</u> (b) <u>5</u> 18 $(d)\frac{35}{36}$ (c) <u>11</u> 12
- 98. A certain type of missile hits the target with probability p = 0.3. What is the least number of missiles should be fired so that there is at least an 80% probability that the target is hit? / एक विशेष प्रकार के प्रक्षेपास्त्र की लक्ष्य भेदने की प्रायिकता p = 0.3है। न्यूनतम कितने प्रक्षेपास्त्र दागे जाने चाहिए कि लक्ष्य को भेदने की प्रायिकता कम-से-कम 80% हो? (b) 6 (a) 5 (c) 7 (d) None of the above **99.** For two mutually exclusive events A and B, P(A) = 0.2 and $P(\overline{A} \cap \overline{B}) = 0.3$. What is
 - (P(A|AUB)) equal to? / दो परस्पर अपवर्जित घटनाओं A और B के लिए P(A) = 0.2 और $P(\overline{A} \cap \overline{B}) = 0.3$ हैं। (P(A|AUB)) किसके बराबर है?
 - (a) $\frac{1}{2}$ $(b) = \frac{1}{5}$ $(d) \frac{2}{2}$ $(c) \frac{2}{7}$
- **100.** What is the probability of 5 Sundays in the month of December? / दिसम्बर मास में 5 रविवारों के आने की प्रायिकता क्या है?
 - (a) $\frac{1}{7}$ (c) $\frac{3}{2}$ (b) $\frac{2}{\pi}$ (d) None of the above

101. If *m* is the geometric mean of

 $\frac{y \log(yz)}{\left(\frac{y}{z}\right)}$ $\left(\frac{z}{x}\right)^{\log(zx)}$ and $\left(\frac{x}{y}\right)^{\log(xy)}$ then what is the value of $m? / \frac{1}{2} \left(\frac{y}{z} \right)^{\log(yz)}$, $\left(\frac{y}{x} \right)^{\log(zx)}$

- $\left(\frac{x}{y}\right)^{\log(xy)}$ का गुणोत्तर माध्य m है, तो m का मान क्या है?
- (a) 1 (b) 3
- (d) 9 (c) 6

- **102.** A point is chosen at random inside a rectangle measuring 6 inches by 5 inches. What is the probability that the randomly selected point is at least one inch from the edge of the rectangle? / 6 इंच लंबे और 5 इंच चौड़े एक आयत के अंदर एक बिंदू यादच्छिकतः चूना जाता है। इसकी प्रायिकता क्या है कि यादूच्छिकतः चुने गए उस बिंदु की उस आयत के कोर से दूरी कम-से-कम एक इंच है?
 - $(b)\frac{1}{3}$ (a) <u>2</u> 3 (d) <u>2</u> (c) <u>1</u>
- **103.** The mean of the series x_1, x_2, \dots, x_n is X. If x_2 is replaced by λ , then what is the new mean? /

श्रेणी x_1, x_2, \dots, x_n का माध्य X हैं यदि x_2 को λ द्वारा प्रतिस्थापित किया जाता है, तो नया माध्य क्या होगा?

(a) $\overline{X} - x_2 + \lambda$ (b) $\frac{\overline{X} - x_2 - \lambda}{n}$ (c) $\frac{\overline{X} - x_2 + \lambda}{n}$ (d) $\frac{n\overline{X} - x_2 + \lambda}{n}$

104. For the data 3, 5, 1, 6, 5, 9, 5, 2, 8, 6 the mean, median and mode are x, y and z respectively. Which one of the following is correct? / आकडों 3, 5, 1, 6, 5, 9, 5, 2, 8, 6 के लिए माध्य, माध्यिका और बहुलक क्रमशः x, y और z हैं। निम्नलिखित में से कौन–सा एक सही है?

(a) $x = y \neq z$ (b) $x \neq y = z$ (c) $x \neq y \neq z$ (d) x = y = z

105. Consider the following statements in respect of a histogram: /एक आयत चित्र के बारे में निम्नलिखित कथनों पर विचार कीजिएः

1. The total area of the rectangles in a histogram is equal to the total area bounded by the corresponding frequency polygon and the x-axis. / एक आयत चित्र में, आयतों का कुल क्षेत्रफल संगत बारंबारता बह्म्ज और x --अक्ष से परिबद्ध कुल क्षेत्रफल के बराबर होता है।

2. When class intervals are unequal in a frequency distribution, the area of the rectangle is proportional to the frequency. / एक बारंबारता बंटन में जब वर्ग अंतराल असमान होते हैं, तो आयत का क्षेत्रफल बारंबारता के समानुपातिक होता है।

Which of the above statements is/are correct? / उपर्युक्त कथनों में से कौन-सा/से सही है/हैं?

- (a) 1 only / केवल 1
- (b) 2 only / केवल 2
- (c) Both 1 and 2/1 और 2 दोनों
- (d) Neither 1 nor 2/7 तो 1 और न ही 2
- **106.** A fair coin is tossed 100 times. What is the probability of getting tails an odd number of times? / एक न्याय्य सिक्का 100 बार उछाला जाता है। उतनी बार, जो कि एक विषम संख्या हो, तो पट आने की प्रायिकता क्या है? $(a)\frac{1}{2}$

 $(b)\frac{3}{8}$

 $(d)\frac{1}{8}$

 $(c)\frac{1}{4}$

107. What is the number of ways in which 3 holiday travel tickets are to be given to 10 employees of an organization, if each employee is eligible for any one or more of the tickets? / एक संगठन के 10 कर्मचारियों को छुट्टी–यात्रा के 3 टिकट देने के तरीकों की संख्या क्या है, यदि प्रत्येक कर्मचारी एक या एक से अधिक टिकट के पात्र हैं?

(a) 60 (b) 120

(c) 500 (d) 1000 **108.** If one root of the equation $(l - m)x^2 + lx + 1 =$

0 is double the other and *l* is real, then what is the greatest value of m? / यदि समीकरण $(l-m)x^2 +$ lx + 1 = 0 का एक मूल दूसरे मूल का दो गुना है और l वास्तविक है, तो m का अधिकतम मान क्या है?

- $(a) \frac{9}{2}$ (b) <u>9</u> 8 (d)<u></u> $(c) - \frac{8}{2}$
- **109.** What is the number of four-digit decimal numbers (< 1) in which no digit is repeated? / चार अंकीय दशमलव संख्याओं (< 1) की, जिसमें कोई भी अंक दोहराया नहीं जाता है, संख्या क्या है? (b) 4536 (a) 3024 (c) 5040 (d) None of the above
- **110.** What is a vector of unit length orthogonal to both the vectors $i^{+} + j^{+} + k$ and 2i + 3j - k st terms in the end of the $i^{+} + i^{+} +$ और 2i + 3i - k के लंबकोणिक एकक लंबाई का सदिश क्या है?

(a)
$$\frac{-4i^{+}+3j^{-}-\hat{k}}{\sqrt{26}}$$
 (b) $\frac{-4i^{+}+3j^{+}+\hat{k}}{\sqrt{26}}$
(c) $\frac{-3i^{+}+2j^{-}-\hat{k}}{\sqrt{14}}$ (d) $\frac{-3i^{+}+2j^{+}+\hat{k}}{\sqrt{14}}$

111. If *a*, *b* and *e* are the position vectors of the vertices of an equilateral triangle whose orthocenter is at the origin, then which one of the following is correct? / यदि a, b और e समबाह

त्रिभुज के, जिसका लंबकेन्द्र मूलबिंदू पर है, शीर्षों के स्थिति सदिश हैं, तो निम्नलिखित में से कौन सा एक सही है?

(a) a + b + e = 0

(b)
$$a + b + e = unit vector / vector + e$$

- (c) a + b = e
- (d) a = b + e
- **112.** What is the area of the parallelogram having diagonal $3i^{+} + j^{-} - 2k$ and $i^{-} - 3j^{+} + 4k^{+}$? विकर्णों 3i^ + और - 2k i^ - 3 विले समीवंतर चतुर्भुज का क्षेत्रफल क्या है?
 - (a) $5\sqrt{5}$ square units / वर्ग इकाई
 - (b) 4√5 square units/ वर्ग इकाई
 - (c) $5\sqrt{3}$ square units/ वर्ग इकाई
 - (d) $15\sqrt{2}$ square units/ वर्ग इकाई

113. Consider the following in respect of the matrix [⊥]) के बारे) : / _{आव्यूह} A = (⁻¹ A = (-1 में निम्नलिखित पर विचार कीजिएः 1. $A^2 = -A$ 2. $A^3 = 4A$ Which of the above is/are correct? / उपर्युक्त में से कौन–सा/से सही हैं/है? (a) 1 only / केवल 1 (b) 2 only/ केवल 2 (c) Both 1 and 2 / 1 और 2 दोनों (d) Neither 1 nor 2 / न तो 1 और न ही 2 **114.** Which of the following determinants have value 'zero'? / निम्नलिखित सारणिकों में से किनके मान 'शून्य' हैं? 41 1 5 1. 79 7 9 29 5 3 1 a' b+c2. $|1 \ b \ c+a|$ $1 \quad c \quad a+b$ 0 c h 3. $|-c \ 0 \ a|$ -b -a 0Select the correct answer using the code given below. / नीचे दिए गए कूट का प्रयोग कर सही उत्तर चुनिए। (a) 1 and 2 only / केवल 1 और 2 (b) 2 and 3 only / केवल 2 और 3 (c) 1 and 3 only / केवल 1 और 3 (d) 1, 2 and 3 / केवल 1, 2 और 3 **115.** What is the acute angle between the lines represented by the equations $y - \sqrt{3}x - 5 = 0$ and $\sqrt{3}y - x + 6 = 0$? / समीकरणों $y - \sqrt{3}x - \sqrt{3}y - \sqrt{3$ 5 = 0 और $\sqrt{3}y - x + 6 = 0$ द्वारा निरूपित रेखाओं के बीच का न्यून कोण क्या है? (a) 30° (b) 45° (c) 60° (d) 75° **116.** The system of linear equations kx + y + z = 1,

x + ky + z = 1 and x + y + kz = 1 has a unique solution under which one of the following conditions? / रैखिक समीकरण निकाय kx + y + z =

1, x + ky + z = 1 और x + y + kz = 1 का एकमात्र हल होगा, यदि (a) $k \neq 1$ and $k \neq -2 / k \neq 1$ और $k \neq -2$ (b) $k \neq 1$ and $k \neq 2 / k \neq 1$ और $k \neq 2$ (c) $k \neq -1$ and $k \neq -2 / k \neq -1$ और $k \neq -2$

- (d) $k \neq -1$ and $k \neq 2 / k \neq -1$ और $k \neq 2$
- 117. What is the number of different messages that can be represented by three 0's and 1's ?/ अलग-अलग संदेशों की, जो तीन 0 और दो 1 द्वारा निरूपित किए जा सकते हैं, संख्या क्या है?
 - (a) 10 (b) 9 (c) 8 (d) 7
- **118.** If $\log_a(ab) = x$, then what is $\log_b(ab) = x$ equal to? / यदि $\log_a(ab) = x$ है, तो $\log_b(ab) = x$ किसके बराबर है,

(a)
$$\frac{1}{x}$$
 (b) $\frac{x}{x+1}$
(c) $\frac{x}{1-x}$ (d) $\frac{x}{x-1}$

- **119.** If $y = \log_{10} x + \log_{x} 10 + \log_{x} x + \log_{10} 10$ then what is $\binom{dy}{dx}_{x=10}$ equal to? / यदि $y = \log_{10} x + \log_{x} 10 + \log_{x} x + \log_{10} 10$ है, तो $\binom{dy}{dx}_{x=10}$ किसके बराबर है? (a) 10 (b) 2 (c) 1 (d) 0
- 120. Suppose ω₁ and ω₂ are two distinct cube roots of unity different from 1. Then what is (ω₁ ω₂)² equal to? / मान लीजिए ω₁ और ω₂ एक (यूनिटि) के, से इतर, दो अलग–अलग घनमूल हैं। तो (ω₁ ω₂)² किसके बराबर है?
 - (a) 3 (b) 1 (c) -1 (d) -3

NDA-2016 I MATH PAPER ANSWER KEY

	1						
1.	С	31.	Α	61.	D	91.	A
2.	А	32.	С	62.	В	92.	В
3.	В	33.	С	63.	С	93.	D
4.	Α	34.	D	64.	С	94.	В
5.	А	35.	Α	65.	А	95.	С
6.	А	36.	С	66.	В	96.	А
7.	D	37.	D	67.	С	97.	С
8.	А	38.	D	68.	С	98.	Α
9.	В	39.	В	69 .	В	99.	В
10.	D	40.	Α	70.	С	100.	С
11.	С	41.	D	71.	С	101.	Α
12.	С	42.	D	72.	А	102.	D
13.	В	43.	В	73.	В	103.	D
14.	В	44.	В	74.	В	104.	D
15.	А	45.	D	75.	А	105.	С
16.	В	46.	В	76.	В	106.	А
17.	А	47.	С	77.	D	107.	D
18.	В	48.	С	78.	D	108.	В
19.	В	49.	С	79.	С	109.	В
20.	С	50.	С	80.	В	110.	В
21.	А	51.	С	81.	А	111.	А
22.	D	52.	Α	82.	Α	112.	С
23.	С	53.	D	83.	В	113.	В
24.	В	54.	С	84.	С	114.	D
25.	D	55.	D	85.	С	115.	Α
26.	D	56.	С	86.	D	116.	Α
27.	А	57.	В	87.	В	117.	Α
28.	В	58.	С	88.	А	118.	D
29.	С	59.	Α	89.	В	119.	D
30.	В	60.	D	90.	С	120.	D

13 |